skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Argenziano, Rita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electronic materials that allow the controlled flow of electrons in aqueous media are required for emerging applications that require biocompatibility, safety, and/or sustainability. Here, a composite hydrogel film composed of graphene and catechol is electrofabricated, and that this composite offers synergistic properties is reported. Graphene confers metal‐like conductivity and enables charge‐storage through an electrical double layer mechanism. Catechol confers redox‐activity and enables charge‐storage through a redox mechanism. Importantly, there are two functional populations of catechols: conducting‐catechols (presumably in intimate contact with graphene) allow direct electron‐transfer; and non‐conducting‐catechols (presumably physically separated from graphene) require diffusible mediators to enable electron‐transfer. Using a variety of spectroelectrochemical measurements, that the capacity of the composite for charge‐storage increases in proportion to the extent by which the catechol‐groups can undergo redox‐state switching is demonstrated. To illustrate the broad relevance of this work, how the redox‐state switching can be related to both the charge storage of energy materials and the memory of molecular electronic materials is discussed. The authors believe this work is significant because it demonstrates that: conducting and redox‐active components enable distinctly different mechanisms for charge‐storage and electron‐transfer; these components act synergistically; and mediators provide unique opportunities to extend the capabilities of electronic materials. 
    more » « less